Geometric control for analysing the quantum speed limit and the physical limitations of computers

نویسنده

  • Benjamin Russell
چکیده

This thesis studies the role of Finsler geometry in quantum time optimal control of systems with constrained control field power and other constraints. The systems considered are all finite dimensional systems with pure states. A Finsler metric is constructed such that its geodesics are the time optimal trajectories for the quantum time evolution operator on the special unitary group. This metric is shown to be right invariant. The geodesic equation, in the form of an Euler-Poincaré equation is found. It is also shown that the geodesic lengths of this same metric equal the optimal times for implementing any desired quantum gate. In a special case, where all are control fields are equally constrained, the desired geodesics are found in closed form. The results obtained are discussed in the general context of natural computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Limit on Computational Time and Speed

We investigate if physical laws can impose limit on computational time and speed of a quantum computer built from elementary particles. We show that the product of the speed and the running time of a quantum computer is limited by the type of fundamental interactions present inside the system. This will help us to decide as to what type of interaction should be allowed in building quantum compu...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

Geometric Methods for Analysing Quantum Speed Limits: Time-Dependent Controlled Quantum Systems with Constrained Control Functions

We are interested in fundamental limits to computation imposed by physical constraints. In particular, the physical laws of motion constrain the speed at which a computer can transition between welldefined states. Here, we discuss speed limits in the context of quantum computing. We derive some results in the familiar representation, then demonstrate that the same results may be derived more re...

متن کامل

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015